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A Rational-Ecological Approach to the
Exploration/Exploitation Trade-offs

Bounded Rationality and Suboptimal Performance

Wai-Tat Fu

How do humans or animals adapt to a new environment?
After years of research, it is embarrassing how little we
understand the underlying processes of adaptation:
just look at how difficult it is to build a robot that learns
to navigate in a new environment or to teach someone
to master a second language. It is amazing how seagulls
and vultures have learned to be landfill scavengers in
the last century and be able to sort through human
garbage to dig out edible morsels. At the time this
chapter is written, an alligator is found in the city park
of Los Angeles, outwitting licensed hunters who tried
to trap the alligator for over 2 months. The ability to
adapt to new environments goes beyond hardwired
processes and relies on the ability to acquire new
knowledge of the environment. An important step in
the adaptation process is to sample the effects of possi-
ble actions and world states so that the right set of
actions can be chosen to attain important goals in the
new environment.

The acquisition of new knowledge of the environ-
ment is often achieved through the dynamic interactions

between an organism and the environment, in which
actions are performed and their effects evaluated based
on the outcomes of actions. In most cases, the organ-
ism has to deal with a probabilistically textured envi-
ronment (Brunswik, 1952), in which the outcomes of
actions are uncertain. The evaluation of different actions
is therefore similar to the process of sampling from
probability distributions of possible effects of the
actions (e.g., see Fiedler & Juslin, 2005). The sampling
process can therefore be considered an interface
between the organism’s cognitive representation of
the environment and the probabilistically textured
environment (see Figure 12.1).

A central problem in the adaptation process is how
to balance exploration of new actions against exploita-
tion of actions that are known to be good. The benefit
of exploration is often measured as the utility of
information—the expected improvement in perfor-
mance that might arise from the information obtained
from exploration. Exploring the environment allows
the agent to observe the results of different actions,
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Explicit information seeking

Cognitive
representation
of the
environment
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sampling |

Information samples update
cognitive representation

from which the agent can learn to estimate the utility
of information by some forms of reinforcement-learning
algorithms (see Fu & Anderson, in press; Sutton &
Barto, 1998; and Ballard & Sprague, chapter 20, this
volume). The estimates allow “good” actions to be dif-
ferentiated from “bad” actions, and that exploitation of
good actions will improve performance in the future.
On the one hand, the agent should keep on exploring,
as exploiting the good actions too early may settle on
suboptimal performance; on the other hand, the cost
of exploring all possible actions may be too large to be
justified. The balance between the expected cost and
benefit of exploration and exploitation is therefore
critical to performance in the adaptation process.
Reinforcement learning is one of the important
techniques in artificial intelligence (Al) and control
theory that allows an agent to adapt to complex envi-
ronments. However, most reinforcement-learning
techniques either require perfect knowledge of the
environment or extensive exploration of the environ-
ment to reach the optimal solution. Because of these
requirements, these computationally extensive tech-
niques often fail to provide a good descriptive account
of human adaptation. Instead, theories have been
proposed that humans often adopt simple heuristics or
cognitive shortcuts given the cognitive and knowl-
edge constraints they face (see the chapters by
Todd & Schooler, chapter 11, and Kirlik, chapter 14).
These heuristics seem to work reasonably well, presum-
ably because they were well adapted to the invariants of
the environment (e.g., Anderson, 1990; Simon, 1996).
The major assumption is that these invariants arise
from the statistical structure of the environment that
cognition has adapted to through the lengthy process of
evolution. By exploiting these invariant properties, sim-
ple heuristics may perform reasonably well in most sit-
uations within the limits of knowledge and cognition.

Probabilistically
textured environment

FIGURE 12.1 The information sampling
process as an interface between the
cognitive representation of the
environment and the external
environment.

The study of the constraints imposed by the envi-
ronment to behavior is often referred to as the ecological
approach that emphasizes the importance of the inter-
actions between cognition and the environment and
has shown considerable success in the past (e.g., chapters
11 and 14, this volume). A similar, but different,
approach called the rational approach further assumes
that cognition is adapted to the constraints imposed
by the environment, thus allowing the construction
of adaptive mechanisms that describe behavior (e.g.,
Anderson, 1990; Oaksford & Chater, 1998). The
rational approach has been applied to explain a diverse
set of cognitive functions such as memory (Anderson &
Milson, 1989; Anderson & Schooler, 1991), catego-
rization (Anderson, 1991), and problem solving
(Anderson, 1990). The key assumption is that these cog-
nitive functions optimize the adaptation of the behav-
ior of the organism to the environment. In this chapter,
I combine the ecological and rational approaches to
perform a two-step procedure to construct a set of
adaptive mechanisms that explain behavior. First, 1
perform an analysis to identify invariant properties of
the environment; second, I construct adaptive mecha-
nisms that exploit these invariant properties and show
how they attain performance at a level comparable to
that of computationally heavy Al algorithms. The
major advantage of this rational-ecological approach is
that, instead of constructing mechanisms based on
complex mathematical tricks, one is able to provide
answers to why these mechanisms exist in the first
place, and how the mechanisms may interact with dif-
ferent environments.

To explain how cognition adapts to new environ-
ments, the rational-ecological approach assumes that,
if cognition is well adapted to the invariant properties
of the general environment, cognition should have a
high tendency to use the same set of mechanisms that
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work well in the general environment when adapting
to a new environment, assuming (implicitly) that the
new environment is likely to have the same invariant
properties. The implication is that, when the new envi-
ronment has specific properties that are different from
those in the general environment, the mechanisms
that work well in the general environment may lead to
suboptimal performance. Traditionally, the information
samples collected from the environment are often con-
sidered unbiased and suboptimal performance or judg-
ment biases are often explained by cognitive heuristics
that fail to process the information samples according
to some normative standards. In the current proposal,
suboptimal performance can be explained by dynamic
interactions between the cognitive processes that
collect information samples and the cognitive repre-
sentation of the environment that is updated by the
information samples obtained. Indeed, as I will show
later in two different tasks, suboptimal performance
often emerges as a natural consequence of this kind of
dynamic interaction among cognition, information
samples, and the characteristics of the environment.
In this chapter, I will present a model of how humans
adapt to complex environments based on the rational-
ecological approach. In the next section, we will first
cast the exploration/exploitation trade-off as a general
sequential decision problem. We will then focus on
the special case where alternatives are evaluated sequen-
tially and each evaluation incurs a cost. We will then
present a Bayesian satisficing model (BSM) that
decides when exploration should stop. We will then
show that the BSM provided good match to human
performance in two different tasks. The first task is a
simple map-navigation task, in which subjects had to
figure out the best route between two cities. In the
second task, subjects were asked to search for a wide
range of information using the World Wide Web (WWW).
In both tasks, the BSM matched human data well and
provided good explanations of human performance,
suggesting that the simple mechanisms in the BSM pro-
vide a good descriptive account of human adaptation.

The Exploration/Exploitation Trade-off

A useful concept to study human activities in unfamil-
iar domains is the construct of a “problem space”
(Newell & Simon, 1972). A problem space consists of
four major components: (1) a set of states of knowl-
edge, (2) operators for changing one state into another,
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(3) constraints on applying operators, and (4) control
knowledge for deciding which operator to apply next.
The concept of a problem space is useful in character-
izing how a problem solver searches for (exploration)
different operators in the connected states of knowl-
edge and how the accumulation of experiences in the
problem space allows the problem solver to accumu-
late search control knowledge for deciding which
operator to apply next in the future (exploitation). The
concept of the problem space is similar to a Markov
decision process (MDP), which has been studied
extensively in the domain of machine learning and Al
in the last 20 years (e.g., see Puterman, 2005, for a
review). A MDP is defined as a discrete time stochastic
control process characterized by a set of states, actions,
and transition probability matrices that depend on the
actions chosen within a given state. Extensive sets of
algorithms, usually in some forms of dynamic pro-
gramming and reinforcement learning, have been
derived by defining a wide range of optimization
problems as MDPs. Although these algorithms are effi-
cient, they often require extensive computations that
make them psychologically implausible. However, the
ideas of a MDP and the associated algorithms have
provided a useful set of terminologies and methods for
constructing a descriptive theory of human perform-
ance. Indeed, applying ideas from machine learning to
psychological theories (or vice versa) has a long history
in cognitive science. By relating the concepts of
operator search in a problem space to that of MDPs,
another goal of the current analyses is to bridge the
gap between research in cognitive psychology and
machine learning.

In this section, I will borrow the terminologies from
MDPs to characterize the problem of balancing explo-
ration and exploitation and apply the rational-ecological
approach to replace the complex algorithms by a BSM.
I will show that the BSM uses simple, psychologically
plausible mechanisms that successfully describe human
behavior as they adapt to new environments.

Sequential Decision Making

Finding the optimal exploration/exploitation trade-off
in a complex environment can be cast as a sequential
decision-making (SDM) problem in a MDP. In general,
a SDM problem is characterized by an agent choosing
among various actions at different points in time to fulfill
a particular goal, usually at the same time trying to maxi-
mize some form of total reinforcement (or minimize
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the total costs) after executing the sequence of actions.
The actions are often interdependent, so that later
choice of actions depends on what actions have been
executed. In complex environments, the agent has to
choose from a vast number of combinations of actions
that eventually may lead to the goal. In situations
where the agent does not have complete knowledge of
the environment, finding the optimal sequence of actions
requires exploring the possible sequences of actions
while learning which of them are better than the oth-
ers. A good balance of exploration and exploitation is
necessary when the utility of exploring does not justify
the cost of exploring all possible sequences, as in the
case of a complex environment such as the WWW.
Many cognitive activities, such as skill learning,
problem solving, reasoning, or language processing,
can be cast as SDM problems, and the exploration/
exploitation trade-off is a central problem to these
activities.! The optimal solution to the SDM problem
is to find the sequence of actions so that the total rein-
forcement obtained is maximized. This can often be
done by some forms of reinforcement learning, which
allows learning of the values of the actions in each
problem state so that the total reinforcement received
is maximized after executing the sequence of actions
that lead to the goal (see, e.g., Watkins, 1989). These
algorithms, however, often require perfect knowledge
of the environment; even if the knowledge is available,
complex computations are required to derive the
optimal solution. The goal of the rational-ecological
approach is to show that the requirement of perfect
knowledge of the environment and complex computa-
tions can be replaced by simple mechanisms with cer-
tain assumption of the properties of the environment.

When Search Costs Matters:
A Rational Analysis

Algorithms for many SDM problems use the softmax
method to select actions in each state. Interestingly,
the softmax method by itself offers a simple way to
tackle the problem of balancing exploration and
exploitation. Specifically, the softmax equation is
based on the Gibbs, or Boltzmann, distribution:

exp(v(at_,s)f‘ t)

D)= 5 (a5

()

in which P(ays) is the probability that the action
a, will be selected in state s, v(as) is the value of

Gay_CH12: Gay 11/10/2006 6:31 PM Page 168 $

action a in state s, t is positive parameter called the
temperature, and the summation is over all possible
actions in state s. The equation has the property that
when the temperature is high, actions will be (almost)
equally likely to be chosen (full exploration). As the
temperature decreases, actions with high values will be
more likely to be chosen (a mix of exploration and
exploitation), and in the limiting case, where ¢ - 0,
the action with the highest value will always be chosen
(pure exploitation). The balance between exploration
and exploitation can therefore be controlled by the
temperature parameter in the softmax equation. In
fact, the softmax method has been widely used in
different architectures to handle the exploration/
exploitation tradeoffs, including architecture of
cognition theory-rational (ACT-R; see Anderson et al.,
2004). Recently, it has also been shown that the use
of the softmax equation in reinforcement learning
is able produce a wide range of human and animal
choice behavior (Fu & Anderson, in press).

Although the softmax method can lead to reason-
able exploration/exploitation trade-offs, it assumes that
the values of all possible actions are immediately avail-
able without cost. The method is therefore only useful
in simple or laboratory situations where the alternatives
are presented at the same time to the decision maker;
in that case, the search cost is negligible. In realistic
situations, the evaluation process itself may often be
costly. For example, in a chess game, the number of
possible moves is enormous, and it is unlikely that a
person will exhaust the exploration of all possible moves
in every step. A more plausible model is to assume that
alternatives are considered sequentially, in that case a
stopping rule is required to determine when evaluation
should stop (e.g., Searle & Rapoport, 1997). The problem
of deciding when to stop searching can be considered a
special case of the exploration/ exploitation trade-offs
discussed earlier: At the point where the agent decides
to stop searching, the best item encountered so far will
be selected (exploitation) and the search for potential
better options (exploration) will stop.

Finding the optimal stopping rule (thus the optimal
exploration/exploitation trade-off) is a computationally
expensive procedure in SDM problems. The goal of
the following analyses is to replace these complex
computations by simple mechanisms that exploit cer-
tain characteristics of the environment. The basic idea
is to use a local stopping rule based on some estimates
of the environment so that when an alternative is
believed to be good enough no further search may
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be necessary. This is the essence of bounded rational-
ity (Simon, 1955), a concept that assumes that the
agent does not exhaust all possible options to find the
optimal solution. Instead, the agent makes choices
based on the mechanism of satisficing, that is, the
goodness of an option is compared to an aspiration
level and the evaluation of options will stop once an
option that reaches the aspiration level is found. There
are a number of ways the aspiration level can be esti-
mated. Here, I will show how the aspiration level can
be estimated by an adaptation process to an environ-
ment based on the rational analysis framework.

Optimal Exploration in a Diminishing-Return
Environment

One major assumption in the current analysis is that
when the agent is searching sequentially for the right
actions, the potential benefits of obtaining a better
action tend to diminish as the search cost increases.
This kind of diminishing-return environment is com-
monly found in the natural world, as well as in many
artificial environments. For example, in his seminal
article, Stigler (1961) shows that most economic informa-
tion in the market place has this diminish-return property.

P Value
16 r
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10

1 2 3 4 5 6 7 8 9 10
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Research on animal foraging has found that food
patches in the wild seem to have this characteristic of
diminishing returns, as the more of the patch the
animal consumes, the lower the rate of return will be
for the remainder of the patch because the food supply
is running out (Stephens & Krebs, 1986). Recently,
Pirolli and Card (1999) also found that large informa-
tion structures tend to have this diminishing-return
characteristic. To further illustrate the generality of
this diminishing-return property, I will give a real-
world example of information-secking task below.

Consider a person looking for a plane ticket from
Pittsburgh to Albany on the internet. Assume that the
P value of each link is calculated by the following
simple preference function:

P =Time + Stopover + Layover,

(2)

in which Time, Stopover, and Layover are variables
that take values from 1 (least preferable) to 5 (most
preferable). For example, a flight that leaves at 11 a.m.,
makes one stopover and has a layover of 5 hours has
Time =5, Stopover = 3, and Layover =1 (thus P=9).
By using a simple set of rules that transform each flight
encounter on the Web to a P value, Figure 12.2 shows
the P values of the flights in their order of encounter

19 20

1 12 13 14 15 16 17 18

Order of Encounter

FIGURE 12.2 The P(reference) value of the links encountered on a Web page. The line represents the

P value of the best link encountered so far.

4



Gray_CH12: G ay 11/10/2006 6:31 PM Page 170 $

[AQ5]

[AQ6]

170 TASK ENVIRONMENT

from a popular Web site that sells plane tickets. We
can see that a few desirable flights are found in the
first few encounters, but the likelihood of finding a
better flight is getting smaller and smaller, as shown
by the line in the figure. It can be shown that this prop-
erty of diminishing-return is robust with different pref-
erence functions or Web sites.

If we assume the simplistic view that the evaluation
of each action incurs a constant cost,? and the informa-
tion obtained from each evaluation (i.e., exploration of
a new action) reduces the expected execution cost
required to finish a task, we can calculate the relation-
ship among the number of evaluations (n), the evalua-
tion costs (n*C), the expected execution costs f(n), and
the total costs f{n) + n*C). As shown in Figure 12.3,
the positively sloped straight line represents the
increase of evaluation costs with the number of evalu-
ations. The curve f(n) represents the expected execu-
tion costs as a function of the number of actions
evaluated. The function f(n) has the characteristic of
diminishing return, so that more evaluations will lead
to smaller savings in execution costs. The U-shape
curve is the total costs, which equals the sum of evalu-
ation costs and execution costs. The U-shape curve
implies that optimal performance is associated with a

Time

Optimal

moderate number of evaluations. In other words, too
much or too little evaluations may lead to suboptimal
performance (as measured by the total costs).

The Bayesian Satisficing Model (BSM)

With the assumption of the invariant property of
diminishing return in the general information environ-
ment, the next step is to propose a set of adaptive
mechanisms that exploit this property. I will show that
the Bayesian satisficing model, which combines a
Bayesian learning mechanism and a simple, local deci-
sion rule, produces good match to how humans adap-
tively balance exploration and exploitation in a general
environment with this diminishing-return property
(Fu & Gray, in press). The Bayesian learning mecha-
nism in the BSM calculates the expected utility of
information in terms of the expected improvement in
performance resulting from the new information. The
local decision rule then compares the evaluation cost
with the utility of information and will stop evaluating
actions when the cost exceeds the utility. The logic of
the model is that if cognition is well adapted to the
characteristic of diminishing returns in which a local
decision rule performs well, then cognition should have

Total costs = f(n)+n*C

performance

Information-seeking

_..----="" Costs =n*C

i Execution costs = f(n)

Number of

actions

Optimal number
of information-seeking

information-seeking
actions (n)

FIGURE 12.3 Optimal exploration in a diminishing-return environment.
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Bayesian Satisficing Model

Local Decision Rule:
Decide when to stop evaluation:
Stop when Cost > Utility

Global Bayesian Learning:
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:

Estimate utility of evaluation by
combining new observations with

ry

Select actions to reach
the goal <

prior knowledge

FIGURE 12.4 The structure of the Bayesian satisficing model.

a high tendency to use the same rule when adapting to
a new environment, assuming that the new environ-
ment is likely to have the same diminishing-return
characteristic.

The details of the BSM are illustrated in Figure 12.4,
which shows the two major processes that allow the
model to adapt to the optimal level of evaluations in a
diminishing-return environment that maps to the vari-
ables in Figure 12.3: (1) the estimation of the function
f(n) and (2) the decision on when to stop evaluating
further options. The first process requires the under-
standing of how people estimate the utility of additional
evaluations based on experience. The second process
requires the understanding of how the decision to stop
evaluating further options is sensitive to the cost
structure of the environment. In the global learning

Execution costs (T= f(n))

process, the model assumes that execution costs can be
described by a diminishing-return function of the num-
ber of evaluations [i.e., f(n)]. A local decision rule is used
to decide when to stop evaluating the next option (see
Figure 12.5) based on the existing estimation of f(n).
Specifically, when the estimated utility of the next
evaluation [i.e., f{(N) —f(N + 1)] is lower than its cost,
the model will stop evaluating the next option. This
local decision rule decides how many evaluations are
performed. The time spent to finish the task given the
particular number of evaluations is then used to
update the existing knowledge of f(nn) based on Bayes’s
theorem.

Fu and Gray (in press) ran a number of simulations
of the BSM using a variety of diminish-return environ-
ments, and showed that the BSM made a number of

Local decision rule:
f(N) — f(N+N’) > Cost (N')?

f(N) Utility of information estimated
: I from N' additional information-seeking
F{( R\ S P~ <1 actions = f(N) — f(N+N')

Execution costs = f(n)

N N+N'

Number of
information-seeking
actions (n)

FIGURE 12.5 The local decision rule in the Bayesian satisficing model.
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interesting predictions on behavior. In summary, the
simulation results show that (1) with sufficient experi-
ence, people make good trade-offs between exploration
and exploitation and converge to a reasonably good
level of performance in a number of diminishing-return
environments, (2) people respond to changes in costs
faster than changes in utility of evaluation, and (3) in
a local-minimum environment, high cost may lead to
premature termination of exploration of the problem
space, thus suboptimal performance.

Figure 12.6 illustrates the third prediction of the
BSM. The flat portion of f(n) (i.e., region B) represents
what we refer to as a local-minimum environment, in
which the marginal utility of exploration [i.e., the
slope of f(n)] varies with the number of evaluations.
The marginal utility is high during initial exploration,
becomes flat with intermediate number of evaluations,
but then becomes high again with greater number of
evaluations. Using the local decision rule, exploration
is likely to stop at the flat region (i.e., when the mar-
ginal utility of evaluation is lower than the cost), espe-
cially when the cost is high. We therefore predict that
in a local-minimum environment the use of a local
decision rule will predict poor exploration of the task
space, especially when the cost is high.
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Testing the BSM Against Human Data

In this section, I will summarize how the BSM
matched human performance in two tasks. In the first
task, subjects were given a simple map navigation task
in which they were asked to find the best route
between two points on the map (Fu & Gray, in press).
Subjects were given the option to obtain information
on the speeds of different routes before they started to
navigate on the map. The cost and utility of informa-
tion was manipulated to study how these factors influ-
enced the decision on when subjects would stop secking
information. To directly test whether subjects were using
the local decision rule, a local-minimum environment
was constructed. The local-minimum environment had
an uneven diminish-return characteristic, so that the use
of a local decision rule would be more likely to prema-
turely stop seeking information, leaving the problem
space underexplored and, as a result, performance
would be suboptimal. Indeed, the human data con-
firmed the prediction, providing strong support for the
use of a local decision rule. The second task was a real-
world task in which subjects were asked to search for
information using the WWW. We combined the BSM
with the measure of information scent (Pirolli & Card,

Time
A B C
‘ S’'>cost (n’)
.............. E I s
foﬁﬁﬁfflf:ﬁllfﬁﬁiﬁﬁ_ = ":J:::::::""" ——————— «—§"
: ‘ S" <cost (n’)
i E Execution costs = f(n)
s L ,E Number of IS
n’' n’'

FIGURE 12.6 How a local

decision rule may stop exploration prematurely in a local-

minimum environment. In the figure, when the saving in execution costs is smaller than the
cost of the exploration costs [S" <cost (n' )], exploration will stop, leaving a large portion of

the task space unexplored (i.e., task space C).
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1999) to predict link selections and the decision on
when to leave a particular Web page in two real-world
Web sites. In both task, we found that the model fit the
data well, suggesting that the adaptive exploration/
exploitation trade-offs produced by the simple mecha-
nisms of the BSM matched human performance well
in different types of information environment. To pre-
view our conclusions, the results from both tasks pro-
vided strong support for the BSM. The success of the
BSM in explaining performance in the local-minimum
environment also suggests that stable suboptimal per-
formance is likely a result of the dynamic interactions
between bounded rationality and specific properties of
the environment.

The Map-Navigation Task

In the map-navigation task, subjects were presented
with different maps on a computer screen and were
asked to go from a start point to an endpoint on the
map. A simple hill-climbing strategy (usually the short-
est route) was always applicable and sufficient to
accomplish the task (and any path can eventually lead
to the goal), but the hill-climbing strategy was not
guaranteed to lead to the best (i.e., fastest) path. With
sufficient experience, subjects learned the speeds of
different routes and turns and improved performance
by a better choice of solution paths. The problem of
finding the best path in a map could therefore be con-
sidered a SDM problem, in which each junction in
the map was a discrete state, each of the possible routes
passing through the junction defined a possible action
in the state, and finding the fastest path defined a stan-
dard optimization problem.

The speed of the path chosen was experienced in
real time (a red line went from one point to another on
the map, at an average rate of approximately 1 cm/ s),
but the speed of a path could also be checked before-
hand by a simple mouse click (i.e., an information-
secking action). The number of information-seeking
actions therefore served as a direct measure of how
much exploration subjects were willing to do in the
task, and the corresponding execution costs could be
measured by the actual time spent to go from the start
to the endpoint. We manipulated the exploration cost by
introducing a lock-out time to the information-seeking
action. Specifically, in the high-cost condition, after
subjects clicked on the map to obtain the speed infor-
mation of a path, they had to wait 1 s before they could
see the information. The utility of information was
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manipulated by varying the difference between the
fastest and slowest paths in the map. For example, when
the difference was large, the potential saving in execu-
tion costs (i.e., the utility) per information-seeking action
would be higher [i.e., the curve f(n) in Figure 12.3 or
Figure 12.5 is steeper).

To match behavior of the model to human data,
the model was implemented in the ACT-R architec-
ture (Anderson & Lebiere, 1998). The decision rule is
implemented by having two competing productions,
one abstractly representing exploration, and the other
representing exploitation.* In ACT-R, each production
has a utility value, which determines how likely that it
will fire in a given cycle by the softmax equation stated
above. The utility value of each production is updated
after each cycle according to a Bayesian learning mech-
anism (see Anderson & Lebiere, 1998, for details) as in
the BSM (see Figure 12.4). In general, when the util-
ity of the exploration production is higher than that
of the exploitation production, the model is likely to
continue to explore. However, when the utility of the
exploration production falls below that of the exploita-
tion production, the model will likely stop exploring.
The competition between the two productions through
the softmax equation therefore serves as a stochastic
version of the local decision rule in the BSM.

Because of the space limitation, only a briefly sum-
mary of the major findings of the three experiments
was presented here (for details, see Fu & Gray, in
press). First, in diminishing-return environments with
different costs and utilities of information, subjects were
able to adapt to the optimal levels of exploration. The
BSM model provided good fits to the data, suggesting
that the local decision rule in the BSM was sufficient
to lead to optimal performance. Second, in environ-
ments where the costs or utilities of exploration were
changed, subjects responded to changes in costs faster
than changes in utilities of information. Finally, when
the cost was high in a local-minimum environment,
subjects prematurely stopped seeking information and
stabilized at suboptimal performance.

The empirical and simulation results suggest that
subjects used a local decision rule to decide when to stop
seeking information. Perhaps the strongest evidence for
the use of a local decision rule was the finding that in the
local-minimum environment, high cost of exploration
led to “premature” stopping of information seeking, and
as a result, performance stabilized at a suboptimal level.
Although the BSM was effective in finding the right level
of information seeking in most situations, the nature of
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local processing inherently limits the exploration of the
environment. Indeed, we found that the same model,
when interacting with environments with different prop-
erties, exhibited very different behavior. In particular, in
a local-minimum environment, the local decision rule
often results in “insufficient” information secking when
high information-seeking costs discourage exploration of
the environment. On the basis of this result, it is con-
cluded that suboptimal performance may emerge as a
natural consequence of the dynamic interactions
between bounded rationality and the specific properties
of the environment.

A Real-World Information-Seeking
Task: Searching on the WWW

To further test the behavior of the BSM, a real-world
task was chosen and human performance on this task
was compared with that of the BSM. Similar to the
map-navigation task, searching on the World Wide
Web is a good example of a SDM problem: Each Web
page defines a state in the problem space, and clicking
on any of the links on the Web page defines a subset of
all possible actions in that state (other major actions
include going back to the previous pages or going to a
different Web site). The activities on the WWW can
therefore be analyzed as a standard MDP. Because the
number of Web pages on the Internet is enormous,
exhaustive search of Web pages is impossible. Before 1
present how to model the exploration/exploitation
trade-off in this task, I need to digress to discuss a meas-
ure that captures the user’s estimation of how likely a
link will lead to the target information. One such
measure is called information scent, which will be
described next.

Information Scent

Pirolli and Card (1999) developed the information
foraging theory (IFT) to explain information-secking
behavior in different user interfaces and WWW navi-
gation (Pirolli & Fu, 2003; Fu & Pirollj, in press). The
IFT assumes that information-seeking behavior is adap-
tive within the task environment and that the goal of
the information-secker is to maximize information gain
per unit cost. The concept of information scent meas-
ures the mutual relevance of text snippets (such as the
link text on a Web page) and the information goal.
The measure of information scent is based on a
Bayesian estimate of the relevance of a distal source of

information conditional on the proximal cues.
Specifically, the degree to which proximal cues predict
the occurrence of some unobserved target information
is reflected by the strength of association between cues
and the target information. For each word i involved in
the user’s information goal, the accumulated activation
received from all associated information scents for
word j is calculated by

: Pr(i )
IS(Link,) = 1 2], 3
(Link, - 23w, og[ l,rm] (3)

where Pr(i]j) is the probability (based on past experi-
ence) that word i has occurred when word j has
occurred in the environment; W, represents the amount
of attention devoted to word j; and Pr(i) is the base rate
probability of word i occurring in the environment.
Equation 1 is also known as pointwise mutual informa-
tion (Manning & Schuetze, 1999) or PML’ The actual
probabilities are often estimated by calculating the co-
occurrence of word i and j and the base frequencies of
word i from some large text corpora (see Pirolli & Card,
1999). The measure of information scent therefore
provides a way to measure how subjects evaluate the
utility of information contained in a link on a Web page.

The SNIF-ACT Model

On the basis of the IFT, Fu and Pirolli (in press) devel-
oped a computational model called SNIF-ACT (scent-
based navigation and information foraging in the ACT
architecture) that models user=WWW interactions. The
newest version of the model, SNIF-ACT 2.0, is based
on a rational analysis of the information environment.
I will focus on the part where the model is facing a sin-
gle Web page and has to decide when to stop evaluat-
ing links on the Web page. In fact, the basic idea of this
part of the SNIF-ACT model was identical to that of
the BSM, which was composed of a Bayesian learning
mechanism and a local decision rule (Figure 12.4).
Specifically, the model assumed that when users eval-
uated each link on a Web page, they incrementally
updated their perceived relevance of the Web page to
the target information according to a Bayesian learn-
ing process. A local decision rule then decided when
to stop evaluating link: the evaluation of the next link
continued until the perceived relevance was lower
than the cost of evaluating for the next link. At that
point, the best link encountered so far will be selected.
Details of the model will be presented below.
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When the model is facing a single Web page, it had
the same exploration/exploitation trade-off problem: to
balance between the utility of evaluating the next link
and the cost of doing so. However, in contrast to the
map-navigation task, the utility of information was not
measured by time. Instead, the utility of information
(from evaluating the next link) is measured by the like-
lihood that the next link will lead to the target informa-
tion. Details of the analysis can be found in Fu &
Pirolli (in press). The probability that the current Web
page will eventually lead to the target information after
the evaluation of a set of links L, is

P(Target|L,) = K_}S_U %ﬂoj), )

where X is a variable that measures the closeness to the
target; O is the observation of link j on the current
Web page; K, o, and n are parameters to be estimated.
The link likelihood equation is derived from the
Bayes’s theorem and thus is identical to the Bayesian
learning mechanism in BSM (see Figure 12.4). As
explained, X(O)) can be substituted by the measure of
information scent (i.e., the information scent equa-
tion) of each link j. The link likelihood equation pro-
vides a way to incrementally update the probability
that a given Web page will eventually lead to the target
information after each link is evaluated [i.e., f(n) in
Figures 12.3 and 12.5]).

The model is again implemented in the ACT-R
architecture. To illustrate the behavior of the model,
we will focus on the case where the model is facing a
single Web page with multiple links. There are three
possible actions, each represented by a separate pro-
duction: attend-to-link, click-link, and backup-a-page.
Similar to the BSM model in the map-navigation task,
these productions compete against each other accord-
ing to the softmax equation (which implements the
local decision rule in the BSM; see Figure 12.3). In
other words, at any time, the model will attend to the
next link on the page (exploration), click on a link on
a page (exploitation), or decide to leave the current
page and return to the previous page. The utilities of
the three productions are derived from the link likeli-
hood equation, and they can be shown as:

Attend-to-Link:U(n+1) = %\lw

Ufn)+ 1S(bestlink)

Click - Link : Tkt NG

Un+l)=
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Backup-a-Page : U(n+1)
=MIS(Previous Pages)
—MIS(links 1 to n)-GoBackCost.

In the equations above, U(n) represents the utility
of the production at cycle n, IS(link) represents the
information scent of the currently attended link, N(n)
represents the number of links already attended on the
Web page after cycle n (one link is attended per cycle),
IS(bestlink) is the link with the highest information scent
on the Web page, k is a scaling parameter, MIS(page) is
the mean information scent of the links on the Web
page, and GoBackCost is the cost of going back to the
previous page. The values of k and GoBackCost are esti-
mated to fit the data. The equation for backup-a-page
assumes that the model is keeping a moving average of
the information scent encountered in previous pages. It
can be easily shown that the utility of backup-a-page will
increase as the information scent of the links encoun-
tered on the current Web page declines.

Figure 12.7 shows a hypothetical situation when the
model is processing a Web page in which the informa-
tion scent decreases from 10 to 2 as the model attends
and evaluates Links 1 to 5. The information scent of
the links from 6 onward stays at 2. The mean informa-
tion scent of the previous page was 10, and the noise
parameter ¢ in the softmax equation was set to 1.0. The
value of k and GoBackCost were both set to 5. The ini-
tial utilities of all productions were set to 0. We can see
that initially, the probability of choosing attend-to-link
is high. This is based on the assumption that when a
Web page is first processed, there is a bias in learning
the utility of links on the page before a decision is
made. However, as more links are evaluated, the utili-
ties of the productions decreases [as the denominator
gets larger as N(n) increases]. Since the utility of
attend-to-link decreases faster than that of click-link
[since IS(Best) = 10, but IS(link) decreases from 10 to
2], the probability of choosing attend-to-link decreases
but that of click-link increases. The implicit assump-
tion of the model is that since evaluation of links takes
time, the more links that are evaluated, the more likely
that the best link evaluated so far will be selected
(otherwise the time cost may outweigh the benefits of
finding a better link). As shown in Figure 13.7, after
four links on the hypothetical Web page have been
evaluated, the probability of choosing click-link is
larger than that of attend-to-link. At this point, if click-
link is selected, the model will choose the best (in this
case the first) link and the model will continue to
process the next page. However, as the selection
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FIGURE 12.7 (a) A hypothetical Web page in which the information scent of links decreases
linearly from 10 to 2 as the model evaluated links 1 to 5. The information scent of the links
from 6 onward stays at 2. The number in parenthesis represents the value of information scent.
(b) The probability of choosing each of the competing productions when the model processes
each of the link in (a) sequentially. The mean information scent of the previous pages was 10.
The noise parameter ¢ was set to 1.0. The initial utilities of all productions were set to 0. k and

GoBackCost were both set to 5.

process is stochastic (because of the softmax equation),
attend-to-link may still be selected. If this is the case, as
more links are evaluated [i.e., as N(n) increases], the
probability of choosing attend-to-link and click-link
decreases. However, the probability of choosing
backup-a-page is low initially because of the high
GoBackCost. However, as the mean information scent
of the links evaluated [i.e., MIS(links 1 to n)] on the
page decreases, the probability of choosing backup- a-
page increases. This happens because the mean infor-
mation scent of the current page is perceived to be
dropping relative to the mean information scent of the
previous page. In fact, after eight links are evaluated, the
probability of choosing backup-a-page becomes higher
than that of attend-to-link and click-link, and the proba-
bility of choosing backup-a-page keeps on increasing as
more links are evaluated (as the mean information scent
of the current page decreases). We can see how the com-
petition between the productions can serve as a local
decision rule that decides when to stop exploration.

The Tasks

Data from tasks performed at two Web sites in the Chi
etal. (2003) data set were selected: (1) help.yahoo.com
(the help system section of Yahoo!) and (2) parcweb.

parc.com (an intranet of company internal informa-
tion). We will refer to these sites as Yahoo and ParcWeb,
respectively, for the rest of the article. Each of these
Web sites (Yahoo and ParcWeb) had been tested with a
set of eight tasks, for a total of 8 X 2 = 16 tasks. For each
site, the eight tasks were grouped into four categories
of similar types. For each task, the user was given a spe-
cific information goal in the form of a question (e.g.,
“Find the 2002 Holiday Schedule”). The Yahoo and
ParcWeb data sets come from a total of N =74 adult
users (30 users in the Yahoo data set and 44 users in the
ParcWeb data set). Of all the user sessions collected,
the data were cleaned to throw out any sessions that
employed the site’s search engine as well as any sessions
that did not go beyond the starting home page.

In general, we found that in both sites, there were
only a few (<10) “attractor” pages visited by most of
the users, but there were also many pages visited by
fewer than 10 users. In fact, many Web pages in both
sites were visited only once. To set our priorities, we
decided that it was more important to test whether the
model was able to identify these attractor pages. In
fact, Web pages that were visited fewer than five times
among all users seemed more random than systematic,
and thus were excluded from our analyses. These Web
pages amounted to approximately 30% of all the Web
pages visited by the users.
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To test the predictions of the model on its selection
of links, we first started the model on the same pages as
the participants in each task. The model was then run
the same number of times as the number of participants
in each task and the selection of links were recorded.
After the recordings, in case the model did not pick the
same Web page as participants did, we forced the model
to follow the same paths as participants. This process
repeated until the model had made selections on all
Web pages visited by the participants. The selections of
links by the model were then aligned with those made
by participants. The model provided good fits to the
data (R=0.90 for Yahoo and R?= 0.72 for ParcWeb).

One unique feature of the WWW in the exploration
of actions was the ability to go back to a previous state.
Indeed, the decision to go back to the previous state
indicated that the user believed further search along the
same path might not be justified. It was therefore impor-
tant that the model was able to match when users
decided to go back to the previous state. In the model,
when the information scent of a page dropped below
the mean information scent of previous pages, the
probability of going back increased. Indeed, the model’s
decisions to go back a page were highly correlated
with human decisions to go back for both the Yahoo
(R?=0.80) and ParcWeb (R? = 0.73) sites. These results
provided further support for the adaptive trade-offs
between exploration and exploitation implemented by
the model.

When searching for information on the WWW, the
large number of Web pages makes exhaustive search
impossible. When faced with a Web page with a list of
links, the decision on which link to follow can be con-
sidered a balance between exploration and exploita-
tion. I showed that the BSM matched the behavior of
the users well. Since the study was not a controlled
experiment, it was hard to manipulate the information
environment to test directly whether suboptimal per-
formance would result from the use of a local decision
rule. However, it was promising that the BSM, com-
bining a Bayesian learning mechanism and the use of
a local decision rule, was able to match the human
data well when users interact with a large information
structure such as the WWW.,

Summary and Conclusions

When an organism adapts to a new environment, the
central problem is how to balance exploration and
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exploitation of actions. The idea of exploration is simi-
lar to the traditional concept of search in a problem
space (Newell & Simon, 1972), in which the problem
solver needs to know when to stop searching and
choose actions based on limited search control knowl-
edge. Recently, the idea has also been studied exten-
sively in the area of machine learning in the form of an
SDM problem, and complex algorithms have been
derived for finding the optimal trade-offs between
exploration and exploitation in different environments.

A rational-ecological approach to the problem of
balancing exploration and exploitation was described.
The approach adopts a two-step procedure: (1) identify
invariant properties of the general environment and
(2) construct adaptive mechanisms that exploit these
properties. The underlying assumption is that cogni-
tion is well adapted to the invariant properties of the
general environment; when faced with a new environ-
ment, cognition tends to apply the same set of mecha-
nisms that work well in the general environment to
perform in the new environment.

It is assumed that the general information environ-
ment has an invariant property of diminishing-return.
A BSM was then derived to exploit this property. The
BSM dynamically obtains information samples from
the new environment to update its internal representa-
tion of the new environment according to the Bayesian
learning mechanism. A local decision rule is then
applied to decide when to stop exploration of actions.
The model matched human data well in two very
different tasks that involved different information
environments, showing that the simple mechanisms in
the BSM can account for the adaptive trade-offs
between exploration and exploitation when adapting
to a new environment, a problem that usually requires
complex algorithms and computations.

One major advantage of the current approach is
that one is able to provide an explanation for why cer-
tain mechanisms compute the way they do. In the
BSM, the local decision is effective based on the
assumption of the assumed invariant property of
diminishing return. Another major advantage is that
complex computations can be replaced by simple
heuristics that exploit the statistical properties of the
environment. Indeed, finding the optimal solution in
each new environment has been a tough problem for
research in the area of Al and machine learning that
focuses on various kinds of optimization problems in
SDM. It is promising that the single set of simple
mechanisms in BSM seems to be sufficient to replace
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complex computational algorithms by providing good
match to human performance in two diversely differ-
ent task environments.

Insufficient exploration often leads to suboptimal
performance, as better actions are unexplored and thus
not used. The model demonstrates nicely how a simple
mechanism that exploits the invariant properties of the
general environment may fail to provide an unbiased
representation of the new environment. In fact, else-
where we argued that this is the major reason for why
inefficient procedures persist even after years of experi-
ence with the various artificial tools in the modern
world, such as the many computer applications that
people use everyday (Fu & Gray, 2004). We found that
many of these artificial tools have the characteristics of
a local-minimum environment as shown in Figure 12.6.
Since the cost of exploring new (and often more effi-
cient) procedures is often high in these computer
applications, users tend to stop exploring more efficient
procedures and stabilize at suboptimal procedures even
after years of experience.

Notes

1. In the machine learning literature, the SDM problem
is often solved as a Markov decision problem over the set
of information states S, and the agent has to choose one of
the possible actions in the set A. After taking action a € A
from state s € S, the agent’s state becomes some state s” with
the probability given by the transition probability P(s'|s,a).
However, the agent is often not aware of the current state
(because of lack of complete knowledge of the environ-
ment). Instead, the agent only knows the information
state i, which is a probability distribution over possible
states. We can then define i(s) as the probability that the
person is in state s. After each transition, the agent makes
an observation o of its current state from the set of possible
observations O. We can define P(ols’,a) as the probability
that observation o is made after action a is taken and state
s is reached. We can then calculate the next information
state as:

P(ols’,a) ¥ Pis’ls,a)x(s)

ol == seS
I(S' |U,{1) ¥ Plols’,a) ¥ P(s'|s,a)x(s)
s'eS se8

2. In fact, if one considers the value of P as a normally
distributed variable, then the likelihood of finding a better
alternative will naturally decrease as the sampling process
continues, as one gets more to the tail of the distribution.
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3. One may argue that the cost of exploration is likely
to be an increasing function, which is probably true.
However, the actual function does not play a crucial role
in the current analyses (one still gets a Ushaped curve for
the total costs in). For the sake of simplicity, a linear rela-
tionship is assumed in this analysis.

4. The productions were called hill-climbing (exploita-
tion) and information-seeking (exploration) in Fu and
Gray (in press).

5. The PMI calculations can also be found at
http://glsa.parc.com.
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